lunes, 4 de junio de 2012


             Funciónes matemática (desigualdades)


El concepto de función como un objeto matemático independiente, susceptible de ser estudiado por sí solo, no apareció hasta los inicios del cálculo en el siglo XVII.René Descartes, Isaac Newton y Gottfried Leibniz establecieron la idea de función como dependencia entre dos cantidades variables. Leibniz en particular acuñó los términos «función», «variable», «constante» y «parámetro».

Inicialmente, una función se identificaba a efectos prácticos con una expresión analítica que permitía calcular sus valores. Sin embargo, esta definición tenía algunas limitaciones: expresiones distintas pueden arrojar los mismos valores, y no todas las «dependencias» entre dos cantidades pueden expresarse de esta manera.

Función inyectiva

 
En matemáticas, una función f \colon X \to Y \, es inyectiva si a cada valor del conjunto X\, (dominio) le corresponde un valor distinto en el conjunto Y\, (imagen) de f\,. Es decir, a cada elemento del conjunto Y le corresponde un solo valor de X tal que, en el conjunto X no puede haber dos o más elementos que tengan la misma imagen.
Así, por ejemplo, la función de números reales f:\mathbb{R}\to\mathbb{R}, dada por f(x)=x^2\, no es inyectiva, puesto que el valor 4 puede obtenerse como f(2) y f(-2). Pero si el dominio se restringe a
 
los números positivos, obteniendo así una nueva función g:\mathbb{R}^+\to\mathbb{R}^+ entonces sí se obtiene una función inyectiva.


Función sobreyectiva

 
 
En matemática, una función f \colon X \to Y \, es sobreyectiva (epiyectiva, suprayectiva, suryectiva, exhaustiva o subyectiva), si está aplicada sobre todo el codominio, es decir, cuando la imagen Im_f=Y\,, o en palabras más sencillas, cuando cada elemento de "Y" es la imagen de como mínimo un elemento de "X".
Formalmente,

   \forall y \in Y \quad
   \exists x \in X : \quad
   f(x) = y




Función biyectiva

 
 
En matemática, una función f \colon X \to Y \, es biyectiva si es al mismo tiempo inyectiva y sobreyectiva; es decir, si todos los elementos del conjunto de salida tienen una imagen distinta en el conjunto de llegada, y a cada elemento del conjunto de llegada le corresponde un elemento del conjunto de salida.
Formalmente,
\forall y\in Y : \exists !\ x\in X,\ f(x) = y
Una implicación directa de lo anterior, es que en una función biyectiva la cardinalidad del conjunto de salida o dominio, y el de llegada o codominio, son iguales. Esto también se puede ver en el ejemplo, donde |X|=|Y|=4.

La imagen inversa de un elemento del codominio puede ser vacía, o contener varios objetos del dominio. Esto da lugar a la siguiente clasificación:

Funciones
InyectivaNo inyectiva
Sobreyectiva
Correspon 1602.svg
Biyectiva
Correspon 1502.svg
No sobreyectivaCorrespon 1402.svgCorrespon 1302.svg

No hay comentarios:

Publicar un comentario